

ON L. FEJES TÓTH'S “SAUSAGE-CONJECTURE”

BY

P. KLEINSCHMIDT, U. PACHNER AND J. M. WILLS

ABSTRACT

Let k non-overlapping translates of the unit d -ball $B^d \subset E^d$ be given, let C_k be the convex hull of their centers, let S_k be a segment of length $2(k-1)$ and let V denote the volume. L. Fejes Tóth's sausage conjecture says that for $d \geq 5$

$$V(S_k + B^d) \leq V(C_k + B^d).$$

In the paper partial results are given.

Let B_1^d, \dots, B_k^d be k non-overlapping unit d -balls in the euclidean d -space E^d , $d \geq 2$ (i.e. translates of B^d), let C_k be the convex hull of their centers, let S_k be a segment of length $2(k-1)$, and let V denote the volume.

L. Fejes Tóth conjectured in [3] that for $d \geq 5$ always

$$(1) \quad V(S_k + B^d) \leq V(C_k + B^d).$$

Because $S_k + B^d$ forms a “sausage” in E^d , L. Fejes Tóth called this the “sausage-conjecture”.

In this paper we give partial results of this problem.

In Theorem 2 we prove it for $\dim C_k = 2$. Theorem 2 was found independently by the authors with different proofs. It was the starting point of the paper. In Theorem 3 we show that the “sausage” is at least a relative minimum with respect to the Hausdorff-metric.

In Theorem 4 we investigate relations between the radius of the insphere of C_k and (1).

Theorem 5 shows that (1) holds if $\dim C_k$ is small enough compared with d . In [1] a better inequality is shown between $\dim C_k$ and d with local methods. But Theorem 5 is of interest because of its global methods.

First in Theorem 1 we show that analogous properties may hold also for some

Received March 1, 1982

of the other quermassintegrals W_i , $i = 0, 1, \dots, d$, but not for all. For this we need the general Steiner formula (see [4], p. 214)

$$(2) \quad W_i(C_k + B^d) = \sum_{\nu=0}^{d-i} \binom{d-i}{\nu} W_{\nu+i}(C_k), \quad i = 0, 1, \dots, d.$$

Instead of the W_i we use the intrinsic volumes (see [5], p. 253) V_{d-i} , which are dimension invariant and defined by

$$\omega_i V_{d-i} = \binom{d}{i} W_i, \quad i = 0, 1, \dots, d,$$

where $\omega_i = \pi^{1/2}/\Gamma(i/2 + 1) = V_i(B^i)$; $V_d = V$, $V_{d-1} = \frac{1}{2}F$ (F is surface area) and $V_0 = 1$. Now (2) can be written

$$(3) \quad V_{d-i}(C_k + B^d) = \sum_{\nu=1}^d \binom{\nu}{i} \frac{\omega_\nu}{\omega_i} V_{d-\nu}(C_k), \quad i = 0, 1, \dots, d$$

resp. in the very suggestive form

$$(4) \quad V_{d-i}(C_k + B^d) = \sum_{\nu=i}^d V_{\nu-i}(B^\nu) V_{d-\nu}(C_k), \quad i = 0, 1, \dots, d.$$

For the proofs we need a perhaps well-known inequality

$$(*) \quad \left(\frac{d}{2\pi} \right)^{1/2} < \frac{\omega_{d-1}}{\omega_d} < \left(\frac{d+1}{2\pi} \right)^{1/2}.$$

For a proof of (*) compare [1].

The inequality (*) implies that $f(d) = \omega_{d-1}/\omega_d$ is a strictly increasing function which we use in the proofs without further remarks. For brevity we introduce the

DEFINITION. Let $d \geq 2$, $i \in [0, d]$, and $1 \leq n \leq d - i$ be given. If for each $k > 0$ and each C_k with $\dim C_k \leq n$

$$(5) \quad V_{d-i}(S_k + B^d) \leq V_{d-i}(C_k + B^d),$$

we say that the *sausage property* holds in $E^n \subset E^d$ for V_{d-i} , or in short: $SP(d, d - i, n)$ holds.

So the sausage conjecture means: $SP(d, d, d)$ holds for $d \geq 5$. The condition $n \leq d - i$ is necessary because (5) cannot hold for “large” C_k with $\dim C_k > d - i$.

THEOREM 1. *Let $d \geq 2$ be given. Then*

(a) $SP(d, d - i, n) \Rightarrow SP(d + 1, d + 1 - i, n)$ for each $i \in [0, d]$ and $n \in [1, d - i]$,

- (b) $\text{SP}(d, d-i, n) \Rightarrow \text{SP}(d, d+1-i, n)$ for each $i \in [1, d]$ and $n \in [1, d-i]$,
- (c) $\text{SP}(d, d-i, n) \Rightarrow \text{SP}(d-2, d-i, n)$ for each $i \in [2, d]$ and $n \in [1, d-i]$,
- (d) $\text{SP}(d, d-1, n) \Leftrightarrow \text{SP}(d-2, d-2, n)$ for each $n \in [1, d-2]$,
- (e) $\text{SP}(d, 2, 2)$ does not hold.

PROOF.

$$\begin{aligned}
 (a) \quad \text{SP}(d, d-i, n) &\Leftrightarrow \sum_{\nu=i}^{d-1} \binom{\nu}{i} \frac{\omega_\nu}{\omega_i} V_{d-\nu}(C_k) \geq \binom{d-1}{i} \frac{\omega_{d-1}}{\omega_i} 2(k-1) \\
 (6) \quad &\Leftrightarrow \sum_{\nu=i}^{d-1} \binom{\nu}{i} \omega_\nu V_{d-\nu}(C_k) \geq \binom{d-1}{i} \omega_{d-1} 2(k-1); \\
 \text{SP}(d+1, d+1-i, n) &\Leftrightarrow \sum_{\nu=i}^d \binom{\nu}{i} \omega_\nu V_{d+1-\nu}(C_k) \geq \binom{d}{i} \omega_d 2(k-1) \\
 &\Leftrightarrow \sum_{\nu=i}^d \binom{\nu}{i} \omega_\nu \frac{\omega_{d-1}}{\omega_d} \frac{d-i}{d} V_{d+1-\nu}(C_k) \geq \binom{d-1}{i} \omega_{d-1} 2(k-1).
 \end{aligned}$$

With $V_{d+1-i} = 0$ and ν replaced by $\nu+1$ this is equivalent to

$$(7) \quad \sum_{\nu=i}^{d-1} \binom{\nu+1}{i} \omega_{\nu+1} \frac{\omega_{d-1}}{\omega_d} \frac{d-i}{d} V_{d-\nu}(C_k) \geq \binom{d-1}{i} \omega_{d-1} 2(k-1).$$

From (6) and (7) it follows that we only need to prove for $\nu = i, \dots, d-1$:

$$\begin{aligned}
 \binom{\nu}{i} \omega_\nu &\leq \binom{\nu+1}{i} \omega_{\nu+1} \frac{\omega_{d-1}}{\omega_d} \frac{d-i}{d} \\
 \text{resp.} \quad 1 &\leq \frac{\nu+1}{d} \frac{d-i}{\nu+1-i} \frac{\omega_{\nu+1}}{\omega_\nu} \frac{\omega_{d-1}}{\omega_d}
 \end{aligned}$$

which is true by (*).

(b) From (3):

$$\begin{aligned}
 V_{d-i}(C_k + B^d) &= \sum_{\nu=i}^d \binom{\nu}{i-1} \frac{\nu-i+1}{i} \frac{\omega_\nu}{\omega_i} V_{d-\nu}(C_k) \\
 &= \frac{\omega_{i-1}}{i\omega_i} \sum_{\nu=i}^d \binom{\nu}{i-1} (\nu-i+1) \frac{\omega_\nu}{\omega_{i-1}} V_{d-\nu}(C_k) \\
 &\leq \frac{d-i}{i} \frac{\omega_{i-1}}{\omega_i} \sum_{\nu=i}^d \binom{\nu}{i-1} \frac{\omega_\nu}{\omega_{i+1}} V_{d-\nu}(C_k) + \frac{\omega_d}{i\omega_i} \left(\frac{d}{i-1} \right) \\
 &= \frac{d-i}{i} \frac{\omega_{i-1}}{\omega_i} V_{d-i+1}(C_k + B^d) + \frac{\omega_d}{i\omega_i} \left(\frac{d}{i-1} \right)
 \end{aligned}$$

and “ \approx ” for $C_k = S_k$.

(c) From (3):

$$\begin{aligned}
 V_{d-i}(C_k + B^d) &= \sum_{\nu=i}^d \binom{\nu-2}{i-2} \frac{\nu-1}{i-1} \frac{\nu\omega_\nu}{i\omega_i} V_{d-\nu}(C_k) \\
 &= \sum_{\nu=i}^d \binom{\nu-2}{i-2} \frac{\nu-1}{i-1} \frac{\omega_{\nu-2}}{\omega_{i-2}} V_{d-\nu}(C_k) \\
 &= \sum_{\mu=i-2}^{d-2} \binom{\mu}{i-2} \frac{\mu+1}{i-1} \frac{\omega_\mu}{\omega_{i-2}} V_{d-2-\mu}(C_k) \\
 &\leq \frac{d-2}{i-1} \sum_{\mu=i-2}^{d-2} \binom{\mu}{i-2} \frac{\omega_\mu}{\omega_{i-2}} V_{d-2-\mu}(C_k) + \frac{1}{i-1} \binom{d-2}{i-2} \frac{\omega_{d-2}}{\omega_{i-2}} \\
 &= \frac{d-2}{i-1} V_{d-i}(C_k + B^{d-2}) + \frac{1}{i-1} \binom{d-2}{i-2} \frac{\omega_{d-2}}{\omega_{i-2}}
 \end{aligned}$$

and “=” for $C_k = S_k$.

(d) $\dim C_k \leq d-2$ implies $V_{d-i}(C_k) = 0$. So from (3) with $i = 1$:

$$\begin{aligned}
 V_{d-1}(C_k + B^d) &= \sum_{\nu=2}^d \nu\omega_\nu V_{d-\nu}(C_k) = \pi \sum_{\nu=2}^d \omega_{\nu-2} V_{d-\nu}(C_k) \\
 &= \pi \sum_{\mu=0}^{d-2} \omega_\mu V_{d-2-\mu}(C_k) = \pi V_{d-2}(C_k + B^{d-2}).
 \end{aligned}$$

So

$$V_{d-1}(S_k + B^d) \leq V_{d-1}(C_k + B^d) \Leftrightarrow V_{d-2}(S_k + B^{d-2}) \leq V_{d-2}(C_k + B^{d-2}).$$

(e) Let $k = 3$ and $C_k = T^2$ be an equilateral triangle of edge-length 2, so that $V_1(T^2) = 3$, $V_2(T^2) = \sqrt{3}$. From (3) we have for $i = d-2$

$$V_2(T^2 + B^d) = \sqrt{3} + 3(d-1) \frac{\omega_{d-1}}{\omega_{d-2}} + \pi(d-1) \quad \text{and}$$

$$V_2(S_3 + B^d) = 4(d-1) \frac{\omega_{d-1}}{\omega_{d-2}} + \pi(d-1),$$

so

$$\begin{aligned}
 V_2(T^2 + B^d) - V_2(S_3 + B^d) &= \sqrt{3} - (d-1) \frac{\omega_{d-1}}{\omega_{d-2}} \\
 &= \sqrt{3} - 2\pi \frac{\omega_{d-3}}{\omega_{d-2}} < \sqrt{3} - 2\pi \frac{\omega_1}{\omega_2} = \sqrt{3} - 4 < 0.
 \end{aligned}$$

THEOREM 2. *If $\dim C_k = 2$, then for $d \geq 3$:*

$$V_d(S_k + B^d) \leq V_d(C_k + B^d)$$

and equality iff $C_k = S_k$.

PROOF. With $\dim C_k = 2$ we obtain from (3):

$$V_d(C_k + B^d) = \omega_{d-2} V_2(C_k) + \omega_{d-1} V_1(C_k) + \omega_d.$$

If we denote by V'_{ij} , $i = 1, 2$, $j = 1, \dots, k$ those parts of $V_i(C_k)$ which lie in B_i^d (Fig. 1), then

$$V_d(C_k + B^d) \geq \sum_{j=1}^k (\omega_{d-2} V'_{2j} + \omega_{d-1} V'_{1j}) + \omega_d$$

and equality iff $C_k = S_k$, i.e. if all $V'_{2j} = 0$.

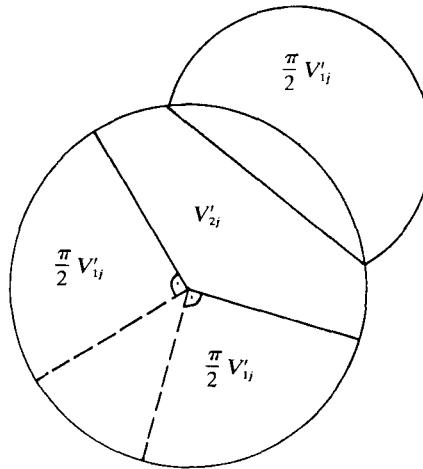


Fig. 1.

For $d \geq 3$ we have $\omega_{d-1}/\omega_{d-2} \leq \pi/2$. So

$$V_d(C_k + B^d) \geq \omega_{d-1} \sum_{j=1}^k \left(\frac{\pi}{2} V'_{2j} + V'_{1j} \right) + \omega_d$$

and equality iff $C_k = S_k$. So to prove (1) it suffices to prove

$$2(k-1)\omega_{d-1} + \omega_d \leq \omega_{d-1} \sum_{j=1}^k \left(\frac{2}{\pi} V'_{2j} + V'_{1j} \right) + \omega_d$$

(8)

$$\text{resp.} \quad (k-1)\pi \leq \sum_{j=1}^k \left(V'_{2j} + \frac{\pi}{2} V'_{1j} \right).$$

(8) can be interpreted in $\text{aff } C_k = E^2$.

On the left we have the volume of k unit circles $B_j^2 = B_j^d \cap \text{aff } C_k$ minus those parts which come from the cones of the exterior angles of C_k which always give π .

On the right we have $V'_{2j} = V_2(C_k \cap B_j^2)$ and $\frac{1}{2}\pi V'_{1j} = \frac{1}{4}\pi V_1(bdC_k \cap B_j^2)$ (see Fig. 1). So $\frac{1}{2}\pi V'_{1j}$ can be realized by the volume of the half-circle over a segment of $bdC_k \cap B_j^2$ or as two quarter-circles if $bdC_k \cap B_j^2$ contains a vertex of C_k (Fig. 1). So the parts on the right cover those on the left side of (8) and Theorem 2 is proved.

The next theorem shows that the “sausage” is at least a local minimum.

THEOREM 3. *If there is a line $g \subset E^d$ with $\sup_{x \in C_k} \delta(g, x) \leq \lambda < 1$ and if $d \geq 1 + 2\pi\lambda^2/(1 - \lambda^2)$, then*

$$V_d(S_k + B^d) \leq V_d(C_k + B^d).$$

PROOF. Let c_i denote the centers of B_i^d , $i = 1, \dots, k$, and let c'_i be their orthogonal projections onto g . Without restriction let the c'_i be enumerated in the order they lie on g . Then we can define angles φ_i , $i = 1, \dots, k - 1$, by

$$\cos \varphi_i := \frac{\|c'_{i+1} - c'_i\|}{\|c'_{i+1} - c'_i\|}, \quad \text{where } 0 \leq \varphi_i < \frac{\pi}{2} \text{ is assumed.}$$

By our assumption $(1 - \lambda^2)^{1/2} \leq \cos \varphi_i$ and $\sin \varphi_i \leq \lambda$.

Further let φ and $0 \leq \psi \leq \pi/2$ be given by

$$\varphi = \varphi_j := \max_{1 \leq i \leq k-1} \varphi_i \quad \text{and} \quad \cos \psi := \frac{\|c'_k - c'_1\|}{\|c'_k - c'_1\|}.$$

By the triangle-inequality we get $\psi \leq \varphi$.

If $D(C_k)$ denotes the diameter of C_k , then

$$\begin{aligned} V_1(C_k) &\geq D(C_k) \geq \|c_k - c_1\| \\ &= \frac{1}{\cos \psi} \|c'_k - c'_1\| = \frac{1}{\cos \psi} \sum_{i=1}^{k-1} \|c'_{i+1} - c'_i\| \geq \frac{\cos \varphi}{\cos \psi} \cdot 2(k-1). \end{aligned}$$

From the monotonicity of V_2 it follows at once that

$$\begin{aligned} V_2(C_k) &\geq V_2(\text{conv}\{c_1, c_k, c_j, c_{j+1}\}) \geq D(C_k) \sin(\varphi - \psi) \\ &\geq 2(k-1) \cdot (\sin \varphi \cos \varphi - \cos^2 \varphi \tan \psi). \end{aligned}$$

This yields

$$\begin{aligned}
 & V_d(C_k + B^d) - V_d(S_k + B^d) \\
 & \geq \omega_{d-2} V_2(C_k) + \omega_{d-1}(V_1(C_k) - 2(k-1)) \\
 & \geq 2(k-1)\omega_{d-1} \left(\frac{\omega_{d-2}}{\omega_{d-1}} (\sin \varphi \cos \varphi - \cos^2 \varphi \tan \psi) + \frac{\cos \varphi}{\cos \psi} - 1 \right) \\
 & := 2(k-1) \cdot y(\varphi, \psi),
 \end{aligned}$$

where $y(\varphi, \psi)$ is defined for $0 \leq \psi \leq \varphi < \pi/2$.

We want to obtain $y(\varphi, \psi) \geq 0$. As $y(\varphi, \varphi) = 0$ it is sufficient to show

$$\frac{\partial y}{\partial \psi} = \frac{\cos \varphi}{\cos^2 \psi} \left(\sin \psi - \frac{\omega_{d-2}}{\omega_{d-1}} \cos \varphi \right) \leq 0 \quad \text{for } 0 \leq \psi \leq \varphi.$$

As $\sin \psi / \cos \varphi \leq \sin \varphi / \cos \varphi = \tan \varphi$ this is clearly true if

$$(9) \quad \frac{\omega_{d-2}}{\omega_{d-1}} \geq \sqrt{\frac{d-1}{2\pi}} \geq \tan \varphi.$$

By our assumption we have $\sin \varphi \leq \lambda$ and $(d-1)/2\pi \geq \lambda^2/(1-\lambda^2)$. From this (9) follows and Theorem 3 is proved.

REMARKS. (1) The estimate (9) is actually a generalization of Theorem 3. It is easy to construct polytopes C_k , where the distance to any line is arbitrarily large but φ is arbitrarily small.

(2) For $\lambda \leq \frac{1}{2}(\varphi \leq \pi/6)$ the assertion of Theorem 3 holds for $d \geq 4$, for $\lambda \leq 1/\sqrt{2}$ ($\varphi \leq \pi/4$) it holds for $d \geq 8$.

(3) Let $\dim C_k = d$. Then $V_d(C_k + B^d) \geq V_d(S_k + B^d)$ if

$$\sup_{x \in C_k} \delta(g, x) \leq \frac{\omega_{d-2}}{\sqrt{\omega_{d-2}^2 + \omega_{d-1}^2}} \leq \sqrt{\frac{d-1}{d-1+2\pi}}$$

for a line g .

In contrast to Theorem 3 we now consider a situation in which C_k is not close to any line.

THEOREM 4. *Let $\dim C_k = n \geq 2$ and let the radius $r(C_k)$ of the in-sphere of C_k be not smaller than $r > 0$. Then*

$$V_d(C_k + B^d) > m V_d(S_k + B^d) \quad \text{for } d \geq n-1 + n \left(\frac{4}{\pi} \right)^{1/(n-1)} \left(m \left(1 + \frac{1}{r} \right)^n \right)^{2/(n-1)}.$$

Here m is an arbitrary positive constant.

PROOF. From a well-known relation ([4], p. 186) we have

$$C_k + B^d \subset \left(1 + \frac{1}{r}\right) C_k.$$

If we denote by B_ρ^n an n -ball of radius $\rho \geq 1$ then

$$V_n(B_\rho^n) = k\omega_n = \rho^n \omega_n \leq V_n(C_k + B^n) \leq \left(1 + \frac{1}{r}\right)^n V_n(C_k)$$

and by the isoperimetric properties of the V_i , $i = 1, \dots, n-1$ ([4], p. 278)

$$V_i(B_\rho^n) = \binom{n}{i} \frac{\omega_n}{\omega_{n-i}} \rho^i = \binom{n}{i} \frac{\omega_n}{\omega_{n-i}} k^{i/n} \leq \left(1 + \frac{1}{r}\right)^i V_i(C_k)$$

$i = 1, \dots, n$.

We only need the cases $i = n-1$ and n , so:

$$(10) \quad \begin{aligned} V_d(C_k + B^d) &= \sum_{i=0}^n \omega_{d-i} V_i(C_k) \\ &> \omega_{d-n} \omega_n k \left(1 + \frac{1}{r}\right)^{-n} + \omega_{d-n+1} \omega_n \cdot \frac{n}{2} k^{1-1/n} \left(1 + \frac{1}{r}\right)^{1-n}. \end{aligned}$$

For

$$\frac{\omega_{d-n}}{\omega_{d-1}} \geq \frac{2m}{\omega_n} \left(1 + \frac{1}{r}\right)^n$$

we obtain

$$\omega_{d-n} \omega_n k \left(1 + \frac{1}{r}\right)^{-n} \geq 2mk \omega_{d-1} > 2m(k-1) \omega_{d-1}$$

and

$$\omega_{d-n+1} \omega_n \frac{n}{2} k^{1-1/n} \left(1 + \frac{1}{r}\right)^{1-n} \geq \frac{\omega_{d-n+1}}{\omega_{d-n}} \frac{\omega_{d-1}}{\omega_d} \frac{n}{2} k^{1-1/n} \left(1 + \frac{1}{r}\right) \cdot 2m \omega_d > m \omega_d,$$

i.e.

$$V_d(C_k + B^d) > m V_d(S_k + B^d).$$

So we have to show that (10) holds for the given d and n . For this we remark that

$$\frac{\omega_{d-n}}{\omega_{d-1}} \geq \left(\frac{d-n+1}{2\pi}\right)^{(n-1)/2} \quad \text{and} \quad \omega_n^{-2/(n-1)} \leq \pi^{-n/(n-1)} \frac{n}{2}.$$

REMARK. For fixed m and r the condition in Theorem 4 is essentially linear. For instance: for $m = 1$, $r(C_k) \geq 1$ and $n \geq 9$, then $V_d(C_k + B^d) \geq V_d(S_k + B^d)$ for $d \geq 6n - 1$.

We are now able to present an estimate with no further restrictions.

THEOREM 5. $SP(d, d, n)$ holds for $d \geq 75n^3$.

PROOF. Making use of Theorem 2 and Theorem 3 we may assume that the distance of C_k from every line is at least $1/\sqrt{2}$ and that $n \geq 3$. Let $C_k^n := C_k$ and $\Delta_n := \Delta(C_k^n)$ denote the minimal width of C_k^n . Then there exists a $(n-1)$ -flat H_{n-1} from which C_k^n has the distance $\Delta_n/2$. Let C_k^{n-1} be the orthogonal projection of C_k^n onto H_{n-1} and Δ_{n-1} the minimal width of C_k^{n-1} . Continuing this process we obtain polytopes C_k^n, \dots, C_k^1 with the minimal widths $\Delta_n \leq \dots \leq \Delta_1$.

The distance of C_k to the line H_1 is at most

$$\frac{1}{2}\sqrt{\Delta_n^2 + \dots + \Delta_2^2} \leq \frac{1}{2}\Delta_2\sqrt{n-1}$$

and by our assumption we have

$$\frac{\Delta_2}{2} \geq \frac{1}{\sqrt{2}\sqrt{n-1}}.$$

Let j be the largest index with $\Delta_j/2 \geq 1/\sqrt{2}\sqrt{n-1}$. Then

$$\sin \varphi_i := \frac{\Delta_i}{2} < \frac{1}{\sqrt{2}\sqrt{n-1}} \quad \text{for } i > j.$$

The distances of the vertices of C_k^j and of the other projections of the centers of B_1^d, \dots, B_k^d onto H_j are at least

$$2 \cdot \prod_{i=j+1}^n \cos \varphi_i \geq 2 \cdot \left(\frac{2n-3}{2n-2}\right)^{(n-1)/2}.$$

Defining

$$P_k^j := \left(\frac{2n-2}{2n-3}\right) C_k^j$$

the distances become at least 2. Now we have:

$$r(P_k^j) = \left(\frac{2n-2}{2n-3}\right)^{(n-1)/2} \cdot r(C_k^j)$$

$$(11) \quad \begin{aligned} & \geq \left(\frac{2n-2}{2n-3} \right)^{(n-1)/2} \cdot \Delta_j \cdot \begin{cases} \frac{\sqrt{j+2}}{2j+2} & \text{for } j \text{ even} \\ \frac{1}{2\sqrt{j}} & \text{for } j \text{ odd} \end{cases} \quad (\text{see [2]}) \\ & \geq \left(\frac{2n-2}{2n-3} \right)^{(n-1)/2} \cdot \frac{1}{\sqrt{2}\sqrt{n-1} \cdot \sqrt{j+1}}. \end{aligned}$$

Furthermore, we obtain by easy Steiner-symmetrization and by the homogeneity of the V_i :

$$\begin{aligned} V_i(C_k) & \geq V_i(C_k^i) = \left(\frac{2n-3}{2n-2} \right)^{i(n-1)/2} V_i(P_k^i) \\ & \geq \left(\frac{2n-3}{2n-2} \right)^{j(n-1)/2} V_i(P_k^j) \quad \text{for } i = 0, \dots, j \end{aligned}$$

which yields

$$(12) \quad \begin{aligned} V_d(C_k + B^d) & \geq \left(\frac{2n-3}{2n-2} \right)^{j(n-1)/2} V_d(P_k^j + B^d) \\ & \geq V_d(S_k + B^d) \end{aligned}$$

if

$$V_d(P_k^j + B^d) \geq \left(\frac{2n-2}{2n-3} \right)^{j(n-1)/2} V_d(S_k + B^d).$$

We remark that these relations remain true for the case $j = n$.

Using Theorem 4 and (11) we obtain that (12) holds for

$$d \geq j-1 \cdot \left(\frac{4}{\pi} \right)^{1/(j-1)} \cdot \left(\sqrt{2(n-1)} \sqrt{j+1} + \left(\frac{2n-2}{2n-3} \right)^{(n-1)/2} \right)^{2j/(j-1)}.$$

For $2 \leq j \leq n$ and $n \geq 3$ this can be estimated as follows:

$$\begin{aligned} & j-1 + j \cdot \left(\frac{4}{\pi} \right)^{1/(j-1)} \cdot \left(\sqrt{2(n-1)} \sqrt{j+1} + \left(\frac{2n-2}{2n-3} \right)^{(n-1)/2} \right)^{2j/(j-1)} \\ & \leq n-1 + n \frac{4}{\pi} \cdot (\sqrt{2(n-1)} \sqrt{j+1} + e^{1/4})^{2j/(j-1)}. \end{aligned}$$

As

$$\frac{\partial}{\partial j} (\sqrt{2(n-1)} \sqrt{j+1} + e^{1/4})^{2j/(j-1)} \leq 0$$

in $[2, n]$ we may continue

$$\begin{aligned} &\leq n - 1 + n \cdot \frac{4}{\pi} \left(\sqrt{6} \sqrt{n-1} + e^{1/4} \right)^4 \\ &\leq 75n^3 \end{aligned}$$

which proves our theorem.

REFERENCES

1. U. Betke, P. Gritzmann and J. M. Wills, *Slices of L. Fejes Tóth's sausage conjecture*, *Mathematika* **29** (1982), 194–201.
2. T. Bonnesen and W. Fenchel, *Theorie der konvexen Körper*, Springer, Berlin-New York, 1974.
3. L. Fejes Tóth, *Research problem* 13, *Period. Math. Hung.* **6** (1975), 197–199.
4. H. Hadwiger, *Vorlesungen über Inhalt, Oberfläche und Isoperimetrie*, Springer, Berlin, 1957.
5. P. McMullen, *Non-linear angle-sum relations for polyhedral cones and polytopes*, *Math. Proc. Camb. Phil. Soc.* **78** (1975), 247–261.

Address of first two authors

MATH. INST. UNIV. BOCHUM
UNIVERSITÄTSSTR. 150
D-4630 BOCHUM-QUERENBURG, FRG

Address of third author

MATH. INST. UNIV. SIEGEN
HÖLDERLINSTR. 3
D-5900 SIEGEN, FRG