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ON L. FEJES TOTH'S 
"SAUSAGE-CONJECTURE" 

BY 

P. KL E INS C HM IDT ,  U. P A C H N E R  A N D  J. M. WILLS 

A B S T R A C T  

Let k non-overlapping translates of the unit d-ball B d C E a be given, let Ck be 
the convex hull of their centers,  let Sk be a segment  of length 2(k - 1) and let V 
denote the volume. L. Fejes T6th 's  sausage conjecture says thai for d _-> 5 

V(Sk + B ~) <~ V(Ck + B~). 

In the paper partial results are given. 

Let B ~,---, B ~ be k non-overlapping unit d-balls in the euclidean d-space E ~, 

d _-> 2 (i.e. translates of B d), let Ck be the convex hull of their centers, let Sk be a 

segment of length 2 ( k -  1), and let V denote the volume. 

L. Fejes T6th conjectured in [3] that for d => 5 always 

(1) V(Sk + Ba)<= V(Ck + B'~). 

Because Sk + B  d forms a "sausage" in E d, L. Fejes T6th called this the 

"sausage-conjecture". 

In this paper we give partial results of this problem. 

In Theorem 2 we prove it for dim Ck = 2. Theorem 2 was found independently 

by the authors with different proofs. It was the starting point of the paper. In 

Theorem 3 we show that the "sausage" is at least a relative minimum with 

respect to the Hausdorff-metric. 

In Theorem 4 we investigate relations between the radius of the insphere of Ck 

and (1). 

Theorem 5 shows that (1) holds if dim Ck is small enough compared with d. In 

[1] a better inequality is shown between dim Ck and d with local methods. But 

Theorem 5 is of interest because of its global methods. 

First in Theorem 1 we show that analogous properties may hold also for some 
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of the other quermassintegrals W~, i = 0, 1 , . . . ,  d, but not for all. For this we 

need the general Steiner formula (see [4], p. 214) 

(2) W~(Ck+Ba)=~ d - i  W,+,(Ck), i = 0 , 1 , . . . , d .  
v =0 b p 

Instead of the W~ we use the intrinsic volumes (see [5], p. 253) V~-i, which are 

dimension invariant and defined by 

o~,Vd_, = ( d )  W~, i = 0 , 1 , . . - , d ,  

where ~o~ = 7rl/2/F(i/2+ 1)= V~(B'); Va = V, Va ~ =~F~ (F is surface area) and 

Vo = 1. Now (2) can be written 

(3) Va-i(Ck+ Ba)= ~=~ (;)o9~ ~ Va-v(Ck), i = 0, 1,- �9 . ,d  

resp. in the very suggestive form 

d 

(4) v~ ,(ck +B~)= Y~ V~_,(B")Vd_.(Ck), i =0,1 , . . . ,d .  
v = i  

For the proofs we need a perhaps well-known inequality 

(*) < ~ - ' <  
O)d 

For a proof of (*) compare [1]. 

The inequality (*) implies that f(d)= wd-1/oJa is a strictly increasing function 

which we use in the proofs without further remarks. For brevity we introduce the 

DEFINITION. Let d _-> 2, i E [0, d], and 1 _-< n ~ d - i be given. If for each 

k > 0 and each Ck with dim Ck --< n 

(5) V._,(Sk + Ba)~ Va-,(G + B a ) ,  

we say that the sausage property holds in E " C  E d for Va-~. or in short: 

SP(d, d - i, n) holds. 

So the sausage conjecture means: SP(d, d, d) holds for d => 5. The condition 

n =< d - i is necessary because (5) cannot hold for "large" Ck with dim Ck > 

d - i .  

THEOREM 1. Let d >= 2 be given. Then 
(a) S P ( d , d - i , n ) ~ S P ( d + l , d + l - i , n )  for each i E [ 0 ,  d] and nG 

[1,d -i],  
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(b) SP(d, d - i, n)  ~ SP(d, d + 1 - i, n) [or each i E [1, d] and n ~ [1, d - i l, 
(c) SP(d, d - i, n) ~ SP(d - 2 ,  d - i, n ) foreach  i ~ [2, d] and n E [1, d - i], 
(d) SP(d, d - 1, n)  r SP(d - 2, d - 2, n) for each n E [1, d - 2], 
(e) SP(d, 2, 2) does not hold. 

PROOF.  

(a) 

(6) -(;) ( ) 
S P ( d + l , d + l - i . n ) r 1 6 2  v=,~" (~) o~.Va+,_~(Ck,> ( d )  a,d2(k - 1) 

V a + ~ - v ( C k ) > ( d - 1 )  i 

With Vd+~-~ = 0 and v replaced by v + 1 this is equivalent to 

Vd-~(Ck)~= (d  ? l)~od-~2(k - 1 ) .  

From (6) and (7) it follows that we only need to prove for v = i , "  -, d - 1: 

resp. 

which is true by (*). 
(b) From (3): 

(/-,Iv ~ �9 O - ) v + l  - -  - -  
rod-, d - i  
tad d 

v + l  d - i  o~+loJa-i 
1 < 

d v + l - i  ~o~ ~oa 

= 

- .---- ( v ~ i + l  to~ V~-~(Ck) 
| (-Oi v = i  i - -  1 i - 1  

"~ 1 r v=~ i - -  1 tOi+l lr 

=d-i.,,-,i ,,,, V . - , §  i - 1  

and " - "  for C, = Sk. 
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( c )  F r o m  ( 3 ) :  

~ ( v - 2 )  v -  l v~ V._.(Ck ) 
Vn-,(Ck + B d )  = . : ,  i - 2  i---1 iw, 

.=~ i - 2  i 1 w,-~ 

d - 2  

Z 
~ = i - 2  

v,,_2_,.(G) 
i - 2 ]  i - 1  wi 2 

- i - 1  ~, ~ 2 i 2 0 ~ i -  2 " - o J i -  2 

_ d - 2 i  - 1 Vn-, (Ck + Ba-2) + / _ ~ 1  1 (d  ~_ 2 )  ~ 

and " =  " for Ck = Sk. 

(d) dim Ck =< d -  2 implies Vd-l(Ck)= 0. So from (3) with i = 1: 

d d 

+ B = 
~,=2 v=2 

d - 2  

ix=O 

So 

Vd_~(Sk + Bd)<= Vd ,(Ck + B ~) r Vd-2(Sk + B d-2) <= Vu-2(Ck + Bd-2). 

(e) Let  k = 3 and Ck = T 2 be an equilateral triangle of edge-length 2, so that 

VI(T  2) = 3, V2(T 2) = V'3. From (3) we have for i = d - 2 

Vz(T 2 + B n) = ~ + 3(d - 1) 
(d0d - 1 

+ rr(d - 1) and 
O)d - 2  

Vz(S3+ B '~) = 4 ( d  - 1 )  od , +  rr(d - 1 ) ,  
fog -2 

SO 

V2(T 2 + B d ) - V2($3 + B d ) = V ~  - (d - 1) oJd-__2 
09d 2 

= N / 3  - 2 "rr c0,~_3 = < V ~ - 2 7 r  ~ X / 3 - 4  < 0. 
god --2 0 )  2 
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THEOREM 2. I f  dim Ck = 2, then for d >-_ 3: 

V~(Sk + Bd)<= Vd(C~ + B d) 

and equality if[ Ck = Sk. 

PROOF. With dim Ck = 2 we obtain  f rom (3): 

Va ( Ck + B d) = ood_2 V2( Ck ) + oad-, V,( Ck ) + wd. 

If we denote  by V~;, i = 1,2, ] = 1 , - . . ,  k those parts  of V~(Ck) which lie in B ]  

(Fig. 1), then  

k 

v~ (c~ + u ~) >- ~ (,od_2v~, + ,o~_, v',,) + 0,~ 
i=1 

and equal i ty  if[ Ck = Sk, i.e. if all V'j = 0. 

Fig. 1. 

For  d => 3 we have  Wd-1/Od-2 ----< 7r[2. So 

./=1 

and equal i ty  if[ Ck = Sk. So to p rove  (1) it suffices to p rove  

2(k - 1)~od-~ + cod -< ~o.-1 ~ V'~ s + V~j + w. 

(8) 
resp. (k - 1)Tr -< ~ ( V~' + 7 r j = l  -2  vljt) . 
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(8) can be in te rp re ted  in att Ck = E :. 

On  the left we have  the vo lume  of k unit circles B~ = B~ f3 aft Ck minus those 

par ts  which come  f rom the cones  of the exter ior  angles of Ck which always give 

77". 

O n  the right we have V~j V2(Ck f3 B~) and ~ ' = ~_TrV,j = ~TrV~(bdCk A B~) (see 

Fig. 1). So �89 s can be real ized by the vo lume  of the half-circle over  a segment  

of bdCk N B} or as two quarter-circ les  if bdCk f') B} contains  a ver tex  of Ck (Fig. 

1). So the parts  on the right cover  those  on the left side of (8) and T h e o r e m  2 is 

proved.  

The  next  t h e o r e m  shows that  the " s a u s a g e "  is at least a local min imum.  

THEOREM 3. If there is a line g C E  d with sup,~c, 6 ( g , x ) ~ h  < 1  and if 
d ~ 1 + 27rh2/(1 - h 2 ) ,  then 

Vd(Sk + BU)<= Vd(Ck +Bd). 

PROOF. Let  ci deno te  the centers  of B d i = 1 , . . .  k, and let c'i be their  i ,  

or thogona l  pro jec t ions  on to  g. Wi thout  restr ic t ion let the c'~ be e n u m e r a t e d  in 

the o rder  they lie on g. T h e n  we can define angles r i = 1,- �9 -, k - 1, by 

Jlc: ,- c',ll 
cos q~,:= II c,§ - c, I1' where  0 _- q~, < ~ is assumed.  

By our  assumpt ion  (1 - h2) 1/~ -_< cos ~oi and sin ~o~ =< h. 

Fur the r  let ~o and 0 ~ tk-< ~ / 2  be  given by 

q~=~os:= max ~pl and cos t~ := l l c l  k -c ' l j [  
~ , ~ - ~  - c ,  II " 

By the t r iangle- inequal i ty  we get  t~ _-< r 

If D(CE) denotes  the d i ame te r  of Ck, then  

v l ( f k  ) >= O ( f k  )>-_ lick - e l l l  

k-1  COS 
_ 1 [[c~_c,[l=____~l ~ iic,+_c;ll> . 2 ( k - l ) .  

c o s  6 c o s  ~0 ,=,  = c o s  4 '  

From the monoton ic i ty  of V2 it follows at once that  

V~(CE) >= V2(conv{cl, c~, c~, q+l}) ----> D(Ck)sin(q~ - ~0) 

=> 2(k - 1)" (sin q~ cos ~p - cos 2 q~ tan qJ). 
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This yields 

Vd(Ck + Bd)  - Vd(Sk + B d) 

>= ~o~_2 V2(Ck ) + oJ~_~(V,(Ck ) - 2(k - 1)) 

[ cos  q~ ) _-> 2(k - 1)o2d-1 o)d-2 (sin ~ cos ~ - c o s  2 r tan 0)  +------7 - 1 
\OJa 1 

:= 2(k - 1). Y0P, 0), 

where Y0P, 0) is defined for 0 =  < 0 =<r < zr/2. 

We want to obtain y(q~, 0)=> 0. As y(q~, ~p)= 0 it is sufficient to show 

O0 - cos 2 0 sin 0 - oJd_~ cos ~p =< 0 for 0 =< 0 =< ~P. 

As sin 0/cos r =< sin q/cos r = tan ~ this is clearly true if 

(9) ~~ __-___ ~ / ~  -> tan q~. 
(20d- 1 

By our assumption we have sin ,p _-< h and (d - 1)/2zr _-> A2/(1 - h2). From this (9) 

follows and Theorem 3 is proved. 

REMARKS. (1) The estimate (9) is actually a generalization of Theorem 3. It is 

easy to construct polytopes Ck, where the distance to any line is arbitrarily large 
but ~p is arbitrarily small. 

(2) For h-<�89162 _-< zr/6) the assertion of Theorem 3 holds for d _->4, for 
h -< 1/~/2 (,p _-< ~r/4) it holds for d > 8. 

(3) Let dimCk = d .  Then Vd(Ck + B~) > V~(Sk + B d) if 

sup ~(g' x) =< X/o~ ~~ --<~/i d - 1  

for a line g. 

In contrast to Theorem 3 we now consider a situation in which Ck is not close 

to any line. 

THEOREM 4. Let dim Ck = n _-> 2 and let the radius r(Ck) of the in-sphere of 

Ck be not smaller than r > O. Then 

(4)1/~"-~( ( 1 , " ,  2/~'-~' 
V a ( C k + n d ) > m V d ( S k + B  d) [ o r d > = n - l + n  m 1+7) ) . 

Here m is an arbitrary positive constant. 
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PROOF. 

THE SAUSAGE CONJECTURE 

From a well-known relation ([4], p. 186) we have 

Ck + B~ C (I +~) Ck. 

223 

If we denote by B~ an n-ball of radius p -> 1 then 

V.(B",)=kto.=p"~o.<=V.(G+B")<= 1+ v . (G)  

and by the isoperimetric properties of the V~, i = 1,. �9 n - 1 ([4], p. 278) 

( (7) n] o2. p , =  02. k,/. < 1+ V~(Ck) 
V~(B~) = \ i  / to._, ca. , = 

i = 1 , . - . , n .  

We only need the cases i = n - 1 and n, so: 

V~(C~ + Bd)= ~, o~d ,V,(Ck) 
i = 0  

(lO) 
> ~od-.~o.k (1 + ~ ) - " +  ~od_.,,o)~ . 2  k '  1/" (1+~)'-" 

For 

we obtain 

and 

i.e. 

O)d -1  (-On 

~oa_.oJ.k (1 + 1) " =  2mkoJa-i > 2m(k-1)~oa_l 

n k l - l /n  ~ O)d-n+l O.)d- 1 n 1-1In oJd-,,+loJ,, ~ 1 + -- oJd-.- ~oa "~ k 1 + �9 2m~oa > moJ,~, 

Vd(Ck + B ~ ) >  mVd(Sk + Bd). 

So we have to show that (10) holds for the given d and n. For this we remark that 

w d _ , , > ( d - n +  1)'" ,)/2 
~od_, 27rr and ~o~z/~._l~ =< 7r_./~._1 ) _n 

- 2 " 
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REMARK. For fixed m and r the condition in Theorem 4 is essentially linear. 

For instance: for m = 1, r(Ck)>--_ 1 and n ->9, then Vd(Ck +B~)>= Vd(S~ + B  ~) 
for d - > 6 n - 1 .  

We are now able to present an estimate with no further restrictions. 

THEOREM 5. SP(d,d,n) holds for d >=75n 3. 

PROOF. Making use of Theorem 2 and Theorem 3 we may assume that the 

distance of Ck from every line is at least 1/V~ and that n --- 3. Let C7,: = CE and 

A , :=  A(C~) denote  the minimal width of C7,. Then there exists a (n - 1)-flat H,_~ 

from which C~ has the distance A./2. Let C~ -~ be the orthogonal projection of 

C~, onto H,_~ and A, 1 the minimal width of C7, 1. Continuing this process we 

obtain polytopes C~,- . . ,  C~, with the minimal widths A, __< .. �9 =< At. 

The distance of Ck to the line Hi is at most 

1 2 2 X/A. + . . .  + A2 _-< �89 X/n - 1 

and by our assumption we have 

A__~2> 1 

2 = - 

Let j be the largest index with Aj/2 => 1/~/2 X/n - 1 .  Then 

A 1 
sin ~0i:=- '  < for i>j .  

2 X/2X/-nn - 1 

The distances of the vertices of C~, and of the other projections of the centers of 

B 7 , . . . , B ~  onto ~ are at least 

Defining 

2" ~ cosq:i->2" ( 2 n - 3 ' ]  ("-''`2 
/=j+j \2n  - 2] " 

(2n - 2~ C~ 
P~:=  \ 2 n - 3 ]  

the distances become at least 2. Now we have: 

(2n - 2 ~  (" 1)/2 

r(P~) = \2n - 3} �9 r(C~) 
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(11) 

t X/j + 2  > {2n - 2~ ("-')/2 Aj . 2 j + 2  

= \ ~ }  " 1 

2",/) 

for j even 

for j odd 

> ( 2 . - 2 ) ( - , , , 2  1 
= ~ - d - 2 S j  " v 1  v - d ~ - v )  + 1 

(see [2]) 

Furthermore, we obtain by easy Steiner-symmetrization and by the homogeneity 

of the V~ : 

V , ( G )  = > V, (C~,)= {2n --3'~ '("-l)/2 
\2n  - 2] V, (P~,) 

> ( 2 n  - 3'~ j(" ,v2 
= \~ - f f -_ -~ /  v ,  (P~)  for i = 0,-" ",j 

which yields 

(12) 

Va(Ck +Bd)>= {2n --3~"" ,,/2 
\2n - 2 ]  Va(P~ + Ba)  

>--_ Vd(Sk + B ~) 

if 

Vd (P~ + B ~) > (2n - 2~ j(" ,~/2 
\2n - 31 

V~(& + B~). 

We remark that these relations remain true for the case j = n. 

Using Theorem 4 and (11) we obtain that (12) holds for 

- ( 2 n -  2" (" 1)/2, wo-~) (4)"~ l' 

For 2-<_ j =< n and n => 3 this can be estimated as follows: 

4 
n - l + n - - . ( 2 ~ - 1 ) V j + 1 + e 1 / 4 )  2"~ 

73" 

As 

~( V ~  - 1 ) V j  + 1 + e ~/4)2,~ ,)__< 0 
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in [2, n]  we may continue 

4 X/-g  "3 4 N n - l + n  . - -  - l + e  
7r 

7 5 n  3 

which proves  our theorem. 
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