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ON L. FEJES TOTH’S
“SAUSAGE-CONJECTURE”

BY
P. KLEINSCHMIDT, U. PACHNER AND J. M. WILLS

ABSTRACT

Let k non-overlapping translates of the unit d-ball B¢ C E* be given, let C, be
the convex hull of their centers, let S, be a segment of length 2(k — 1) and let V
denote the volume. L. Fejes TOth's sausage conjecture says that for d =5

V(S. + B)= V(C, + B%).

In the paper partial results are given.

Let BY - -+, Bi be k non-overlapping unit d-balls in the euclidean d-space E*,
d =2 (i.e. translates of B), let C. be the convex hull of their centers, let Si be a
segment of length 2(k —1), and let V denote the volume.

L. Fejes Té6th conjectured in [3] that for d =5 always

6y} V(S« + B4)= V(C. + BY).

Because S« + B forms a ‘sausage” in E°, L. Fejes To6th called this the
“sausage-conjecture’’.

In this paper we give partial results of this problem.

In Theorem 2 we prove it for dim G, = 2. Theorem 2 was found independently
by the authors with different proofs. It was the starting point of the paper. In
Theorem 3 we show that the ‘“‘sausage” is at least a relative minimum with
respect to the Hausdorff-metric.

In Theorem 4 we investigate relations between the radius of the insphere of C;
and (1).

Theorem 5 shows that (1) holds if dim C; is small enough compared with d. In
[1] a better inequality is shown between dim C, and d with local methods. But
Theorem 5 is of interest because of its global methods.

First in Theorem 1 we show that analogous properties may hold also for some
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of the other quermassintegrals W;, i =0,1,---,d, but not for all. For this we
need the general Steiner formula (see [4], p. 214)

d—i

@ W.(Cc+BY)=> (d;i) W,..(G), i=0,1,---d.

v =0

Instead of the W; we use the intrinsic volumes (see {5}, p. 253) V.-;, which are
dimension invariant and defined by

w.-v,‘_,:(?)w.- i=0,1,---.d,

where w; = 7'*/I'(i/2+1)= Vi(B'); V.=V, V,,=3F (F is surface area) and
»=1. Now (2) can be written

3) v‘,A,-(ck+B")=i(;’)-:’T:de(ck), i=0,1,---,d
resp. in the very suggestive form
4) Vi (G +B")=2'_ Voi(B")Vao, (C), i=0,1,---,d.
For the proofs we need a perhaps well-known inequality
© Gr) <=5

For a proof of (*) compare [1].

The inequality (*) implies that f(d) = wa-1/w, is a strictly increasing function
which we use in the proofs without further remarks. For brevity we introduce the

DEerFINITION. Let d =2, i €{0,d], and 1=n=d —i be given. If for each
k >0 and each C. with dim G =n

) Vaoi (S + B) = Vi (G + BY),

we say that the sausage property holds in E" C E* for V,.;, or in short:
SP(d,d —i,n) holds.

So the sausage conjecture means: SP(d, d, d) holds for d = 5. The condition
n =d —i is necessary because (5) cannot hold for “large” C, with dim G, >
d—i

THEOREM 1. Let d =2 be given. Then
(@) SP(d,d —i,n) > SP(d+1,d+1—i,n) for each i€[0,d] and n€
[1,d —i],
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(b) SP(d,d ~i,n) > SP(d,d +1—1i,n) for each i €{1,d] and n €[1,d — i),
(c) SP(d,d ~i,n) > SP(d —2,d —i,n) foreachi €[2,d]andn €[1,d — i},
(d) SP(d,d —1,n) < SP(d —2,d — 2, n) for each n €[1,d —2),

{e) SP(d,2,2) does not hold.

PROOF.

(@) SP(dd—z,n)@E() Ve (oz (71 2k -

v=i

) D (1) o-Vartcz (471 nci2ek -

SP(d+1,d+1-in) & 2( )wadﬂ V(Ck)>( )w,,z(k 1)

o 2( ) t0g- 'dd’i wﬂ_u(q);(";l)wd_lz(k—n.

With V,.,; =0 and v replaced by » +1 this is equivalent to

@) S (V N 1) o292ty )z (d - 1) wai2(k —1).
Wy i

p=i i

From (6) and (7) it follows that we only need to prove for v =i,---,d - 1:

<V) (V+1) Wy -1 d_l
i @ = 1 @ret Wy d

v+l d—i .1 w4
d v+l-i w, ws

fiA

resp. 1

which is true by (*).
{b) From (3):

d
Vd-i(Ck+B")=Z,(ifl) ?‘H&Vd AC)

4

d
=%T2(; v )(V~;+1)——V4- (G
d=iwiwf v\ o _d
= i (0] u»2=i(i~ )w,+ Vd*v(Ck) i .(l"‘l)
d l(l),l

d
=T Vaeis(Ge + B? )+ (1_1)

and “ =" for C, = S;.
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(¢) From (3):

Il
M=

Vo (G)

VoG + B%) = i(” )" Lyo, g (C)
(22

i i—1 iw
2) 1(1)-;2

l_lwll

da-2
u;—z (i — ) i-1o LS Vd P (69

mo @
i—1,”,,2<i 2>w, Ve w(G)+ 52

au
N

-1\i-2

= i:l Vi-i (G +B“"2)+%(d '2>——‘

and “=" for G = §;

(d) dim G =d —2 implies V,,(Cc)=0. So from (3) with i =1:

d d
Vd_l(C;‘ + Bd) = 22 V(l)yvd—v(ck) =1 2‘,2 wv-zva—u(ck)

d—2
=7 D 0. Var,(G)=7VasCc + B
w=0

So

Viei(Se + BY) = Vi(Ce + BY) & VoS + B D)= VoG + BT

219

(e) Let k =3 and C. = T be an equilateral triangle of edge-length 2, so that
q g g

V(TH =3, Vi(T?) = V3. From (3) we have for i =d —2
VAT?+B%)=\3+3(d —1)?+ md-1)
'd -2

VAS;+ B*)=4(d - )Z:‘ m(d - 1),

SO

VAT +B%)— Vu(S: + B)=V3—(d -1) Z""
d7

2 \V3-4<0.
w>



220 P. KLEINSCHMIDT ET AL. Isr. J. Math.

THEOREM 2. If dim G =2, then for d = 3:
Vi(S« + BY) = V,(C. + BY)
and equality iff Ci = Si.
Proor. With dim C, =2 we obtain from (3):
Vai(Ci + BY) = w4 Vo(Ci) + 0ur Vi(Ci) + wa.
If we denote by Vi, i =1,2, j=1,---, k those parts of V;(Ci) which lie in B}
(Fig. 1), then

k
Vi(Ce + B)2 D (w42 Vi + @a Vi) + wa
=1

and equality iff G = S, i.e. if all V3; =0.

®

Fig. 1.

For d =23 we have ws_1/ws-2= 7/2. So
k
Vd(Ck +Bd)§ Wga—1 z (%T Vé, + V{,) + Wy
i=1
and equality iff Cc = Sk. So to prove (1) it suffices to prove

k 2 ,
2(k - l)wd_l + Wy é Wy -1 2 (; Vé] + Vli) + W4

=

®) k -
resp. w—nwgz(w+5vﬁ.
i=1
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(8) can be interpreted in aff G, = E*

On the left we have the volume of k unit circles B} = B} N aff C, minus those
parts which come from the cones of the exterior angles of C, which always give
.

On the right we have V}; = V(G N B}) and 37V}, =iwV,(bdC. N Bj) (see
Fig. 1). So 37V}, can be realized by the volume of the half-circle over a segment
of bdCi N B; or as two quarter-circles if bdC, N B; contains a vertex of C, (Fig.
1). So the parts on the right cover those on the left side of (8) and Theorem 2 is
proved.

The next theorem shows that the “sausage” is at least a local minimum.

THEOREM 3. If there is a line g C E* with sup.ec,6(g x)=A <1 and if
dzZ 1427\ (1 - A%), then

Va(Sc + BY)= V,(C. + BY).

PROOF. Let ¢; denote the centers of B, i =1, -,k and let ¢ be their
orthogonal projections onto g. Without restriction let the ¢} be enumerated in
the order they lie on g. Then we can define angles ¢, i =1,---,k — 1, by

____“Ci,+l_cli
COos @1 =

Temi—cl’ where 0= ¢, <= is assumed.
i+1 i

2

By our assumption (1 —A%)">=cos ¢; and sin ¢; = A.
Further let ¢ and 0= ¢ = 7/2 be given by

¢ == max g and cosy:=

By the triangle-inequality we get ¢ = ¢.
If D(Cy) denotes the diameter of C,, then

Vi(G)z D(G) e —c

lecm c||>—4“2 2(k —1).

From the monotonicity of V, it follows at once that
VAC) = Va(conv{c,, ¢k, ¢;, ¢1}) = D(Ce)sin(p — )

=2(k — 1) (sin @ cos ¢ — cos’ ¢ tan ).



222 P. KLEINSCHMIDT ET AL. Isr. J. Math.

This yields
Vi(Ci + BY)— V(S + BY)
Z wa-2Vo(Gi) + wa-(Vi(G) - 2(k — 1))

= 2(k — Dewy- 1(—(Sm¢pCOS(p —cos’ @ tan 1{;)+CO::; l)

=2(k = 1) y(e, ¥),

where y(¢, ) is defined for 0= ¢ = ¢ < 7/2.
We want to obtain y(¢,¥)=0. As y(¢, ¢) =0 it is sufficient to show

_Qx=cosg( )
W cos U =0 for0=y =e¢.

As sin s /cos ¢ =sin ¢/cos ¢ =tan ¢ this is clearly true if

9 Wa—2 = \/ 2 "=t

©) e ane.

By our assumption we have sin ¢ = A and (d — 1)/27 = A?/(1 — A*). From this (9)
follows and Theorem 3 is proved.

REMARKs. (1) The estimate (9) is actually a generalization of Theorem 3. It is
easy to construct polytopes C,, where the distance to any line is arbitrarily large
but ¢ is arbitrarily small.

(2) For A =3(¢ = m/6) the assertion of Theorem 3 holds for d =4, for
A =1/V2 (¢ = m/4) it holds for d = 8.

(3) Let dim G, =d. Then V,(C. + B)= V, (S, + B%) if

Wi—2 d-1

<

sup (g, x)= =
xe(li (g ) Vo d2+(l),11 d—-1+27w

for a line g.
In contrast to Theorem 3 we now consider a situation in which C; is not close
to any line.

THEOREM 4. Let dim C. = n =2 and let the radius r(C.) of the in-sphere of
Ci be not smaller than r >0. Then

1/(n—1) ny 2/(n-1)
Vi(Ce + BY>mV,(S. + B* ord=zn—-1+n 4 m 1+l .
( ) - ;

Here m is an arbitrary positive constant.
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PrOOF. From a well-known relation ([4], p. 186) we have

C.+BicC (1 +%) Ce.

If we denote by B an n-ball of radius p =1 then
V, (B2 = kw, = p"wn = Va(Cy + B") = (1 +%) V(G

and by the isoperimetric properties of the Vi, i=1,---,n—1 ([4], p. 278)

Vi(B}) = (’:)&p‘ - ('.')&k”" = (1+-})i Vi(C)

Wy —; ! Wy —;

i=1,---,n
We only need the cases i =n —1 and n, so:

V(G +Bd) = 26 wy-; Vi(G)

(10) - ] -
>(.()d_,.(1),,k (1+‘> +wd_,.+1wn '_k171/" <1+_> .
r 2 r

For

s 2 1Y

Wy -1 = w, r
we obtain

1 -n

wdﬁ,.w,.k 1+ ; = 2mk(()d_1 > 2m(k - 1)(.04_1
and
1-n
Wd—n+1Wn z k' (1 +‘1'> EM%—IE k' <1 +1) 2mwg > Mwy,
2 r We-n Wy 2 r

ie.

Vd (Ck +Bd)> de (Sk +Bd)

So we have to show that (10) holds for the given d and n. For this we remark that

(n—1)2 n
) and ;7" V= gD 5

wd_,.><d—n+1

Wy = 277'
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REMARK. For fixed m and r the condition in Theorem 4 is essentially linear.
For instance: for m =1, r(G)= 1 and n =9, then V,(Ci + B*)= V,(Sc + B?)
for d z6n —1.

We are now able to present an estimate with no further restrictions.
THEOREM 5. SP(d,d,n) holds for d =75n°.

Proor. Making use of Theorem 2 and Theorem 3 we may assume that the
distance of C, from every line is at least 1/V2 and that n = 3. Let Cr:= Gy and
A,:=A(CY) denote the minimal width of Ck. Then there exists a (n — 1)-flat H,,
from which C¥% has the distance A, /2. Let Ci™' be the orthogonal projection of
Ci onto H,_, and A,_; the minimal width of Ci '. Continuing this process we
obtain polytopes Ci,- -+, Ci with the minimal widths A, =--- =A,.

The distance of Ci to the line H, is at most

SVAL+ -+ A =3A, Vi —1
and by our assumption we have
Ao, 1
2 V2Vvn-1-
Let j be the largest index with A;/2=1/V2Vn —1. Then

singu=Sc 1
“TR TNV

for i >j.

The distances of the vertices of C% and of the other projections of the centers of
B{ ---,Bi onto H; are at least

n zn __3 (n—1)2
. = |
2- [] cose 22 (2n—2) .

i=j+1

Defining

i 2n—2 ;

io— i

Pi: (2n = 3) Ci

the distances become at least 2. Now we have:

A\ (a2 _
r(Ply= @Z _g) -1(CY)
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Vj+2
n-1y2 2j+2 forjeven
2n =2\

2(2: _3> A - (see [2])
1 forjodd
2Vj

(11) 2(2" _2>(n7l)/2. 1
“\2n-3 V2Vn-1-Vj+1'

Furthermore, we obtain by easy Steiner-symmetrization and by the homogeneity
of the V;:

2n-3
2n -2

V(G = Vi(Ch =( )“Hm Vi(P)

_a\itn—12 _
;@:_g) VPl fori=0,---,j

which yields

Ay in—1)2 ,
Vd(Ck+B")§(%—_—;> Va(PL+ B
(12) = V(S + BY)
if
A\ Q=12
Vi(Pi+ BY)= @—Z—_—i) V.(Sk + BY).

We remark that these relations remain true for the case j = n.
Using Theorem 4 and (11) we obtain that (12) holds for

4 1G-1) 2n -2 (n—1)/2_ 2§/(~1)
d;j—l-(—) -(\/2(n—1)\/j+l+( ) )
T 2n -3
For 2=j=n and n =3 this can be estimated as follows:
'4 G- 2" _ 2 (n—1)12, 2j/G-1)
j—1+j-<;) -(\/Z(n—l)\/j+1+<2n_3) )

4 .
=n—l+n—-(V2n~1) Vij+1+e ™y,

d o
5 (V2n -~ DVj+1+e" =0
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in [2, n] we may continue
4 1/4y4
én—1+n-; V6Vn—1+e'™)

=75n°

which proves our theorem.
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